US 6,263,339 B1

21

an argument to a function. In this case, the scene itself has
an argument that specifies what company the user is looking
at and the scene is accordingly customized. Thus, when the
user looks through any of these wormholes, the scene looks
different because it takes on the identity of the specific
wormbhole being viewed by the user.

As discussed above, the system provides dynamic views
of data without programming expertise. Users are thus
moved closer to the data so that application development
time is reduced. User interfaces may be created quickly and
easily for information rich databases and for applications
such as data warehousing and decision support. Further,
limitations inherent in conventional forms-based or report-
based applications are avoided.

Moreover, the techniques described here may be imple-
mented in hardware or software, or a combination of the
two. Preferably, the techniques are implemented in computer
programs executing on programmable computers that each
includes a processor, a storage medium readable by the
processor (including volatile and nonvolatile memory and/or
storage elements), and suitable input and output devices.
Program code is applied to data entered using an input
device to perform the functions described and to generate
output information. The output information is applied to one
or more output devices.

Each program is preferably implemented in a high level
procedural or object-oriented programming language to
communicate with a computer system. However, the pro-
grams can be implemented in assembly or machine
language, if desired. In any case, the language may be a
compiled or interpreted language.

Each such computer program is preferably stored on a
storage medium or device (e.g., CD-ROM, hard disk or
magnetic diskette) that is readable by a general or special
purpose programmable computer for configuring and oper-
ating the computer when the storage medium or device is
read by the computer to perform the procedures described.
The system also may be implemented as a computer-
readable storage medium, configured with a computer
program, where the storage medium so configured causes a
computer to operate in a specific and predefined manner.

Other embodiments are within the scope of the following
claims.

What is claimed is:

1. A method for executing an application expressed as a
scene graph, the scene graph being a hierarchical represen-
tation of one or more objects, each object capable of
generating code associated with the object, comprising:

traversing the hierarchy of the scene graph;

retrieving byte code associated with each object in the

scene graph;

characterizing each object as one of several types, includ-

ing a shape type object, and for each shape type object
generating a create shape statement;

storing the byte code as part of the scene;

generating the byte code execution image for the scene;

providing the byte code image to an execution engine and

executing each statement in the byte code;
determining whether each statement is a create shape
statement, and if so creating the shape; and

storing the shape in a context hash table using a tokenized

shape name.

2. The method of claim 1, further comprising determining

whether the statement is a begin property statement, and if
S0:

10

15

20

25

30

35

40

45

50

55

65

22
searching for the shape in a context hash table; and
executing a begin method associated with the shape.
3. The method of claim 1, further comprising determining
whether the statement is a set property statement, and if so:

searching for the shape in a context hash table;

evaluating a property expression associated with the
shape; and
assigning a value to the property.
4. The method of claim 1, further comprising determining
whether the statement is an end property statement, and if
S0:

searching for the shape in a context hash table;

executing an end properties method associated with the

shape to commit the properties;

initializing the shape; and

adding the shape to a display list.

5. Computer software for executing an application
expressed as a scene graph, the scene graph being a hierar-
chical representation of one or more objects, each object
capable of generating code associated with the object, the
computer software residing on a computer-readable medium
and comprising instructions for causing a computer to
perform the following operations:

traverse the hierarchy of the scene graph;

retrieve byte code associated with each object in the scene

graph;

characterize each object as one of several types, including

a shape type object, and for each shape type object
generate a create shape statement;

store the byte code as part of the scene;

generate the byte code execution image for the scene;

provide the byte code image to an execution engine and

execute each statement in the byte code;

determine whether each statement is a create shape

statement, and if so create the shape; and

store the shape in a context hash table using a tokenized

shape name.

6. The computer software of claim 5, further comprising
instructions to determine whether the statement is a begin
property statement, and if so:

search for the shape in a context hash table; and

execute a begin method associated with the shape.

7. The computer software of claim §, further comprising
instructions to determine whether the statement is a set
property statement, and if so:

search for the shape in a context hash table;

evaluate a property expression associated with the shape;

and

assign a value to the property.

8. The computer software of claim §, further comprising
instructions to determine whether the statement is an end
property statement, and if so:

search for the shape in a context hash table;

execute an end properties method associated with the
shape to commit the properties;

initialize the shape; and
add the shape to a display list.

#* #* #* #* #*



